
J
H
E
P
0
7
(
2
0
0
8
)
0
9
8

Published by Institute of Physics Publishing for SISSA

Received: April 18, 2008

Accepted: July 7, 2008

Published: July 23, 2008

New exact solutions on the Randall-Sundrum 2-brane:

lumps of dark radiation and accelerated black holes

Mohamed Anber and Lorenzo Sorbo

Department of Physics, University of Massachusetts,

Amherst, MA 01003, U.S.A.

E-mail: manber@physics.umass.edu, sorbo@physics.umass.edu

Abstract: We provide the most general embedding of a purely tensional 2-brane in a

3+1 dimensional bulk described by the AdS C-metric. The AdS C-metric has been first

considered as bulk metric by Emparan, Horowitz and Myers [1, 2], who have found metrics

describing a brane localized black hole. In [1, 2], one of the parameters of the bulk C-metric

was fine-tuned to the brane tension. We relax this fine tuning and we find two new classes of

solutions, the first describing a time dependent, rotationally symmetric metric, the second

describing accelerated black holes on the brane. This is the first exact solution on the

brane describing two objects in interaction. We discuss the qualitative CFT interpretation

of these solutions.

Keywords: Field Theories in Lower Dimensions, AdS-CFT Correspondence, Models of

Quantum Gravity.

mailto:manber@physics.umass.edu
mailto:sorbo@physics.umass.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
7
(
2
0
0
8
)
0
9
8

Contents

1. Introduction 1

2. The setting 3

3. Time dependent solutions 4

3.1 Critical, closed slices (δ = 0, k = −1) 5

3.2 Critical, flat slices (δ = 0, k = 0) 7

4. Time independent solutions 8

5. Discussion and conclusions 12

A. No other solutions 14

1. Introduction

Since the original formulation of the Randall-Sundrum model [3], intensive activity has

aimed at the construction of solutions associated to distributions of matter localized on the

brane (see e.g. [4] - [14]). Despite these efforts, the existence of brane localized black holes

still represents in general an unsolved question. This problem is made especially interesting

by the conjecture [15, 16] that solutions on the Randall-Sundrum brane should correspond

to quantum corrected metrics in the presence of a strongly interacting Conformal Field

Theory (CFT). Such a conjecture has allowed [15, 16] to argue why it has been impossible

to find an asymptotically flat, regular and static black hole localized on the 3-brane. In the

dual picture, indeed, such a black hole should receive the quantum corrections associated

to the CFT degrees of freedom. Such corrections would induce black hole evaporation, so

that the solution cannot be static.

While in the case of a 3-brane embedded in a five-dimensional anti-de Sitter (AdS5)

bulk no well behaved black hole solution has been found, in the lower dimensional case of a

2-brane embedded in AdS4 bulk a class of brane-localized black hole metrics was discovered

already in 1999 by Emparan, Horowitz and Myers (EHM) [1, 2].

The metrics found in [1, 2] have allowed to check the conjecture according to which

brane black holes should correspond to quantum corrected solutions. Indeed, in [15, 16]

these solutions have been interpreted as quantum corrected conical singularities. More

specifically, the fact that the EHM solutions are dressed by a horizon while in 2+1-

dimensional gravity we should get naked conical singularities has been interpreted as the

effect of a ”quantum cosmic censorship” [16] for conical singularities: in the presence of a
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conical singularity, the Casimir effect excites the CFT, that in turn dresses the singularity

with a horizon.

The construction of EHM can be understood as follows. The Randall-Sundrum brane

does not follow a geodesic of the AdS bulk. On the contrary, it experiences a constant accel-

eration [17]. The acceleration is determined by the brane tension, i.e. by the effective cos-

mological constant felt by a brane observer. Therefore a way of finding black hole solutions

on the brane is to look for a metric describing an accelerated black hole in the AdS bulk,

to cut it with a brane and to impose that the acceleration of the black hole coincides with

that of the brane. Now, a metric (called AdS C-metric [18]) describing accelerated black

holes in four dimensional1 Anti-de Sitter space is known. By appropriately cutting the

AdS C-metric with a brane, EHM could find black hole solutions localized on the 2-brane.

The AdS C-metric depends on four parameters, associated (at least in some limit)

to the four dimensional Newton constant, the AdS4 radius, the mass of the black hole

and its acceleration. Once we take into account the brane tension, the whole system is

characterized by five parameters. In order to stick the black hole onto the brane, EHM

impose a relation between the acceleration of the black hole and the tension of the brane,

so that the induced metric depends on the four parameters, that can be associated to the

effective three dimensional Planck mass, the number of CFT degrees of freedom, the value

of the cosmological constant and the black hole mass.

In this paper we will explore the possibility of detuning the brane tension from the bulk

black hole acceleration. As we show in the appendix, all the possible brane configurations

- for a given bulk AdS C-metric — reduce to two classes.

The first class has time-dependent induced metrics, and its CFT dual generally de-

scribes an evolving lump of radiation, possibly on the top of a conical geometry. Depending

on the parameters of the theory, the radiation energy density can stay always finite or can

become infinite. In special cases it is possible to find solutions (already discussed in [20])

where the lump of radiation is static.

The second class of solutions is continuously connected to the black hole metric of

EHM and leads to static metrics. Such metrics describe in general a pair of EHM black

holes accelerated by a strut stretched between them (or by two strings pulling them towards

infinity). In the CFT picture, the energy per unit length of this strut has both classical and

quantum contributions. Indeed, while in pure 2+1 dimensional gravity point particles do

not interact, quantum effects [21] generate a force between the particles. The tension of the

strut takes into account both contributions. The geometrical interpretation of this solution

is quite straightforward, since it turns out that the metric induced on the brane is just a

section of the four dimensional C-metric [18, 22]. This section includes the singularities of

the four-dimensional C-metric and therefore describes two accelerated black holes (the two

black holes reduce to a single one in the case of AdS background and small acceleration).

Our paper is organized as follows. In section 2 we introduce the bulk metric we work

with. In section 3 we present the first class of brane embeddings, where the location of

the brane in the bulk (as well as the induced metric) is time dependent. In section 4 we

1See [19] for a study of similar constructions in more than four dimensions.
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present the class of time independent embeddings. In section 5 we discuss our results -

especially in relation to the conjecture of [15, 16] - and we draw our conclusions. The

appendix contains the proof that the solutions described in this paper represent the unique

possible embeddings of a purely tensional brane in a AdS C-metric bulk.

2. The setting

The AdS C-metric is given by

ds2 =
1

A2(x− y)2

[

−H(y) dt2 +
dy2

H(y)
+

dx2

G(x)
+G(x) dφ2

]

, (2.1)

where the functions H (y) and G (x) are

H(y) = λ− k y2 + 2G4mAy
3 ,

G(x) = 1 + k x2 − 2G4 mAx
3 . (2.2)

In the expressions above, λ > −1 and k = −1 , 0 ,+1, while G4 denotes the four

dimensional Newton constant. This metric describes one or two accelerated black holes

on an Anti de Sitter background with radius ℓ4 = 1/A
√
λ+ 1. Zeros of the function

H (y) corresponds either to black hole or acceleration horizons. In particular, for k = −1,

G4 mA < 1/3
√

3 and λ ≥ 0 (i.e. A ≤ 1/ℓ4), the metric (2.1) describes a black hole of

mass m, subject to acceleration A and with a horizon with spherical topology. The black

hole is accelerated by a string that pulls it towards the AdS boundary. For k = −1,

G4 mA < 1/3
√

3 and −1 < λ < 0 the metric describes two accelerated black holes in AdS

space. A strut between the black holes prevents them from coalescing (alternatively, the

same effect is achieved by two strings that pull the black holes towards the AdS boundary).

This situation is qualitatively similar to that of the usual C-metric on a Minkowskian

background, that corresponds to the case λ = −1. For k = 0 the metric describes an

accelerated version of the AdS planar black hole, whereas for k = +1 it describes an

accelerated AdS black hole with hyperbolic horizon.2 More detailed descriptions of the

AdS C-metric can be found in [23 – 25]. For the present work, all we need to know is that

−1/y is a radial coordinate from the particle (that is located at a singularity at y → −∞).

The coordinate x can be roughly interpreted (for k = −1 and G4mA ≤ 1/3
√

3) as cos θ in

polar coordinates. The x coordinate is bound to be larger than y (x > y), and the surface

x = y corresponds to the AdS4 boundary.

We now want to embed a brane with tension τ ≡ (1 + δ) / (2π G4ℓ4) in this bulk. The

quantity δ is defined in such a way that δ = 0 corresponds to a critical tension brane, that

in absence of bulk matter (m = 0) would lead to a Minkowskian brane induced metric.

2The majority of the literature on the AdS C-metric focuses on the case k = −1, G4mA < 1/3
√

3,

where the coordinate x behaves like cos θ in polar coordinates. If these conditions are not met, the function

G (x) vanishes only in one point, implying that x is now akin to a radial coordinate and the horizon is

noncompact. As a consequence, there is no conical singularity in the metric that can be interpreted as

a string pulling the black hole. Indeed, in this case the object that accelerates the black hole is entirely

hidden behind the horizon.
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As we show in the appendix, the most general embedding of a purely tensional Z2-

symmetric 2-brane in such a bulk is given either3 by y = ψ (t) or x = ξ (φ). In the next

section we will consider the first situation, while the case x = ξ (φ) will be discussed in

section 4.

3. Time dependent solutions

The first class of embeddings we consider are of the form y = ψ (t). The function ψ (t) is

determined by Israel’s junction condition, and obeys the differential equation

(

dψ

dt

)2

= H(ψ (t))2 − H(ψ (t))3

α2
, (3.1)

where we have defined the quantity

α ≡ (1 + δ)
√

1 + λ = 2π G4 τ/A , (3.2)

and α = 1 corresponds to the case studied by EHM. In addition to (3.1), the junction

conditions give the auxiliary equation

2H(ψ)
d2ψ

dt2
− 2H ′(ψ)(

dψ

dt
)2 +H ′(ψ)H2(ψ) = 0 . (3.3)

Using equation (3.1), and using y rather than t as independent variable,4 we find the

induced metric on the brane

ds2 =
1

A2 (x− y)2

[

− dy2

α2 −H (y)
+

dx2

G (x)
+G (x) dφ2

]

. (3.4)

The dynamics of this system can be made more transparent by performing the change of

variable y = −1/Ar and subsequently defining r = a (η) where a (η) obeys the Friedmann-

like equation
a′ (η)2

a (η)4
= A2

(

α2 − λ
)

+
k

a (η)2
+

2G4 m

a (η)3
(3.5)

describing a 2+1 dimensional cosmology with closed, flat, or open slices (depending on the

value of k) whose matter content is given by a cosmological constant ∝ A2
(

α2 − λ
)

/G3

and radiation with temperature ∝ (G4m/G3)
1/3 /a (η). In terms of the variables η, x and

φ the metric reads

ds2 =
a (η)2

(1+Axa (η))2

[

−dη2+
dx2

(1+kx2 − 2G4mAx3)
+
(

1+kx2 − 2G4mAx
3
)

dφ2

]

. (3.6)

In these coordinates the limit A → 0 is straightforward and the resulting geometry

describes a cosmological metric filled with (dark) radiation [26] - [29].

3The fact that possible embeddings come in pairs should not come as a surprise, given the invariance of

the metric (2.1) under the exchange t↔ i φ, x↔ y, H ↔ G.
4This is possible as long as dψ/dt 6= 0. The special case ψ =constant was studied in [20].
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In general, the metric (3.6) describes a lump of radiation on a background with cos-

mological constant A2
(

α2 − λ− 1
)

=
(

2 δ + δ2
)

/ℓ24, as one can see by writing the stress

energy tensor that supports the metric (3.6)

T µ
ν =− A2

8πG3

(

α2−λ− 1
)

diag (1, 1, 1)+
G4m

8πG3a (η)3
(1+Axa (η))3 diag (−2, 1, 1) , (3.7)

where G3 is the three dimensional Newton constant. As we will see in detail in the next

subsections, the size of the lump of radiation, as well as the time-scale over which it evolves,

are of the order of A−1. Note that the cosmological constant that appears in eq. (3.7)

does not have the same value as the first term on the right hand side of the ”Friedmann

equation” (3.5).

In the following subsections we will discuss this metric for some representative choices

of parameters. We will focus on the case of a brane with critical tension (δ = 0, α2 = 1+λ),

where the interpretation of the metric is the most transparent.

Before discussing these special cases, let us remark that by appropriately tuning the

parameters of this class of solutions it is possible to obtain static configurations. These

configurations can be obtained both for a subcritical and for a critical brane, and describe

static, self-gravitating lumps of radiation. A detailed description of these specific cases can

be found in [20].

3.1 Critical, closed slices (δ = 0, k = −1)

For k = −1 and mA < 1/3
√

3 the function G (x) has three zeros, that we denote as

x0, x1, x2 with x0 < x1 < 0 < x2. G is positive for x < x0 and for x1 < x < x2. In the

latter range, we interpret x roughly as cos θ in polar coordinates. x = x1 and x = x2 then

correspond to the polar axis. Since |G′ (x1)| 6= |G′ (x2)| there is a conical singularity either

at the north or at the south pole. We redefine φ so that the axis x = x2 is regular, that

corresponds to having a deficit angle along x = x1. Such a deficit angle is interpreted as

due to a string responsible for the acceleration of the black hole.

For δ = 0, k = −1, the brane induced metric (3.4) takes the form

ds2 =
1

A2 (x− y)2

[

− dy2

1 − y2 − 2G4mAy3
+

dx2

1 − x2 − 2G4mAx3
+

+
(

1 − x2 − 2G4mAx
3
)

dφ2

]

. (3.8)

In this section we will study the limit G4mA ≪ 1. To start with, we note that, for

m = 0, eq. (3.8) reduces to

ds2 =
1

A2 (x− y)2

[

− dy2

1 − y2
+

dx2

1 − x2
+
(

1 − x2
)

dφ2

]

, (3.9)
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Figure 1: The function ρ (t, r) for different values of t = 0, 1, 2, 3. Here 2G4m/πG3A
3 = A = 1.

Each curve has a maximum at r = t.

that is Minkowski space in disguise, since the transformation

x (t, r) =
A2t2 −A2r2 + 1

√

4A2r2 +A4 (t2 − r2 + 1/A2)2
,

y (t, r) =
A2t2 −A2r2 − 1

√

4A2r2 +A4 (t2 − r2 + 1/A2)2
, (3.10)

brings it to the form ds2 = −dt2 + dr2 + r2dφ2. This transformation helps to clarify the

evolution of the lump of radiation associated to the stress energy tensor (3.7). At first order

in G4mA, we get indeed that the energy distribution supporting our solution is given, in

terms of the coordinates t and r, by

ρ (t, r) = Ttt =
2G4 m

πG3A3

r4 +
(

t2 + 1/A2
)2

+ r2
(

4 t2 + 2/A2
)

[

4 r2/A2 + (t2 − r2 + 1/A2)2
]5/2

+ O
(

m2
)

. (3.11)

We plot the profile of ρ (r) at different times in figure 1. This shows that the solution

describes a circular shell of radiation that contracts for t < 0, reaches a maximal energy

density at r = 0 when t = 0 and then bounces to infinity. When t = 0, ρ (t = 0, r) ∝
(

r2 + 1/A2
)

−3
. To first order in G4mA, it is possible to compute the total mass of the

lump as 2π
∫

ρ (t, r) r dr = (G4mA/G3) (1 + O (G4mA)). Note that this shell moves on

the top of a conical geometry with deficit angle 4πG4mA (1 + O (G4mA)), corresponding

to a mass (G4mA/2G3) (1 + O (G4mA)) located at the origin of the system [1].

At variance with the solution of EHM, the metric (3.8) does not display a horizon on the

brane. From the CFT point of view, the quantum cosmic censorship of conical singularities

seems not to be at work for this state. On the other hand it is also worth noting that this

is a time-dependent solution, whereas the censored solution of EHM was static.
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3.2 Critical, flat slices (δ = 0, k = 0)

In this case the induced metric reads

ds2 =
1

A2 (x− y)2

[

− dy2

1 − 2G4mAy3
+

dx2

1 − 2G4mAx3
+
(

1 − 2G4mAx
3
)

dφ2

]

, (3.12)

and the variable x ranges between −∞ < x < (2G4mA)−1/3. x = xm ≡ (2G4mA)−1/3

corresponds to the origin of polar coordinates. We avoid a conical singularity by giving the

angle φ a periodicity 0 < φ < 4πxm/3. In the limit G4mA → 0, this period diverges and

φ becomes a linear coordinate.

This brane induced metric (3.12), like the one described in the previous subsec-

tion, describes an evolving lump of radiation. However, its properties are different.

Let us start by looking at the center of the distribution of radiation, x ≃ xm. In

this region it is convenient to use the ”cosmological” metric (3.6). We have ρ (t̄) =

G4 mM3 (1 +Aa (t̄) xm)3 /8πG3a (t̄)3, where we have switched from the ”conformal time”

η to ”physical time” t̄, i.e. dη = dt̄/a (t̄). The function a (t̄) is obtained by solving the

Friedmann-like equation ȧ2/a2 = A2 +2G4m/a
3. In the early time regime a3 ≪ 2G4m/A

2,

the cosmology is radiation dominated, a (t̄) ∝ m1/3 t̄2/3. In this case the center of our

distribution experiences a ”big bang” with infinite energy density as t̄→ 0 (i.e. y → −∞).

This is different from the situation considered in the previous subsection where the energy

density was always finite.

In the opposite limit a (t̄) ≫ (2G4mA)1/3 /A = (Axm)−1, the metric (3.12) reduces,

close to the origin x ≃ xm, to Minkowski metric modulo an overall scaling of the coor-

dinates (this can be seen most clearly by considering the metric in its form (3.6)). In

the same limit, the stress energy tensor for brane radiation goes to the constant value

T µ
ν ≃ A2/(16πG3) diag (−2, 1, 1).

In order to understand the behavior of the system far from x = xm let us consider the

limit m → 0, with x finite. In this limit the brane is actually flat, and φ becomes a linear

coordinate. This is shown explicitly by the fact that for m = 0 the metric (3.12) reduces to

ds2 =
1

A2 (x− y)2
(

−dy2 + dx2 + dφ2
)

(3.13)

that is brought to the Minkowskian form ds2 = −dT 2 + dX2 + dY 2 by the transformation

x− y =
1

A (T +X)
,

x+ y = A

[

(T −X) − Y 2

T +X

]

,

φ =
Y

T +X
. (3.14)

Since, for m = 0, φ is a linear coordinate, the limit of small m and finite x will corre-

spond to the regime where φ is ”almost” linear, i.e. far from the center of our distribution.

As a consequence, we can compute the energy density ρ (y, x, φ) far from the center of the

distribution of radiation by considering its expression at first order in m. Making use of
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the rotational symmetry of the system, we can set φ = Y = 0. Then, the energy density

of our fluid is given for G4mA≪ 1 by

ρ (T, X, Y ) =
G4mA3

8πG3

3A4 (X + T )4 + 2A2 (X + T )2 + 3

4A5 (T +X)5
+ O

(

(G4mA)2
)

, (3.15)

that, for large T , decreases as T−1.

To sum up, in the case k = 0 our system describes a circular lump of radiation that

starts from infinite density at its center and relaxes down to Minkowski space at large times.

Note that in this case the origin is regular provided we choose the right periodicity for

φ, that implies that — differently from the case considered in the previous section — the

matter content here is just that of the lump of (dark) radiation, and there is no localized

matter on the brane.

4. Time independent solutions

In the second class of solutions the brane embedding is given by x = ξ(φ). Using the K11

component in Isreal junction conditions (A.5) we find that ξ(φ) satisfies the differential

equation
(

dξ

dφ

)2

=
G(ξ(φ))3

α2
−G(ξ(φ))2 . (4.1)

Also, from the K33 component of (A.5) we find the auxiliary equation

2G(ξ)
d2ξ

dφ2
− 3G′(ξ)

(

dξ

dφ

)2

−G2(ξ)G′(ξ) = 0 . (4.2)

In this section we will consider only the case k = −1, that corresponds to the situation

most thoroughly studied in the literature. Since for k = −1 we have that G (x) ≤ 1 in the

interval x1 < x < x2, eq. (4.1) can be solved only if α2 < 1. We will therefore assume

α2 < 1 from now on.

Using x as independent variable5 we find the induced metric

ds2 =
1

A2(x− y)2

[

−H(y) dt2 +
dy2

H(y)
+

dx2

G(x) − α2

]

. (4.3)

To understand this metric we perform the following transformations

x′ =
x√

1 − α2
, y′ =

y√
1 − α2

, t′ =
√

1 − α2 t

A′ = A
√

1 − α2 , λ′ =
λ

1 − α2
, (4.4)

that yield

ds2 =
1

A′ 2(x′ − y′)2

[

−H(y′) dt′ 2 +
dy′ 2

H(y′)
+

dx′2

G(x′)

]

, (4.5)

5The case x =constant (with x obtained by looking for zeros of G′ (x)) has been studied by EHM.
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Figure 2: Schematic plot of the embedding of the brane defined by x = ξ (φ), where the function

ξ (φ) is a solution of eq. (4.1).

where H(y′) = λ′ − k y′ 2 + 2G4mA′ y′ 3 and G(x′) = 1 + k x′ 2 − 2G4 mA′ x′ 3. The Ricci

scalar of the metric (4.5) is a constant R = −6A′ 2(1 + λ′).

The metric (4.5) is a constant φ section of the C-metric [18] (on a Minkowski, de

Sitter, anti-de Sitter background, depending on the value of λ′). Therefore, it describes

accelerated black holes in 2+1 dimensions on the background of CFT matter and of a

cosmological constant given by Λeff = −A′ 2(1 + λ′), as can be seen by writing the stress

energy tensor induced on the brane

T ′µ
ν =

A′ 2

8πG3
(1 + λ′) diag(1, 1, 1) +

G4 mA′ 3

8πG3
(x′ − y′)3 diag(1, 1,−2) . (4.6)

Let us now study the geometry of this system. The bulk black hole horizon has spherical

topology provided G4mA < 1/3
√

3. Using the transformation in (4.4) we see immediately

that this implies that G4mA′ < 1/3
√

3 and, as we show below, the brane x = ξ(φ) cuts

the bulk such that the horizon in (4.5) has circular topology. For G4mA > 1/3
√

3 the

bulk black hole horizon has R2 topology (i.e. the black hole horizon extends all the way

to the boundary of AdS4). In this case, depending on α, we have either G4mA′ < 1/3
√

3

or G4mA′ > 1/3
√

3 which corresponds to having a brane black hole horizon with circular

(S1) or R1 topology, respectively. This horizon is located at the smallest zero of H(y′),

and dresses a singularity at y = −∞.

For a critical brane with δ = 0 we have 1− α2 = −λ. This corresponds to λ′ = −1, so

that the effective cosmological constant on the brane vanishes. Hence the induced metric

in (4.5) degenerates to a constant φ section of the C-metric which describes a pair of black

holes accelerating in asymptotically flat spacetime [22].

For a subcritical brane, −1 < δ < 0, we have 0 < λ < ∞, and therefore −1 < λ′ <

∞. In this situation we obtain a negative cosmological constant on the brane, and the

metric (4.5) describes a constant φ section in the AdS4-C metric [18].

– 9 –
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Figure 3: Numerical solution of eq. (4.1) for the case k = −1 using a critical brane δ = 0. We take

λ = −0.2, and G4mA = 0.0 and 0.15 for the solid and dashed lines respectively. The arrows on

the figure indicate the periodicity of φ. In the first case the period of ξ (φ) of the brane embedding

coincides with that of the bulk: ∆φbulk = ∆φbrane = 2π. In the second case we see that the period

of the brane embedding is larger than the periodicity of φ.

Finally, for a supercritical brane with δ > 0 we obtain −∞ < λ′ < −1 and hence a

positive cosmological constant on the brane. This metric is a constant φ section in the

dS4-C metric which describes an accelerated pair of black holes in dS4 space [30, 31].

Now we turn to the discussion of the embedding of the brane in the bulk. We first

consider the case m = 0 which corresponds to a empty AdS4 bulk. In this case one can

readily integrate eq. (4.1) to obtain

ξm=0(φ) =

√
1 − α2 sinφ

√

α2 cos2 φ+ sin2 φ
. (4.7)

It is clear from the solution that the function ξm=0 (φ) is periodic and that its period

matches that of the angle φ of the bulk, i.e. ∆φbrane = ∆φbulk = 2π. The above solution,

obtained for m = 0, can be used to explain the topology of the constant-y surfaces (and

therefore of the horizon of induced black hole) for small values of m. To this end consider a

unit S2 sphere given by the embedding ξ = cos θ, Y = sin θ cosφ and Z = sin θ sinφ. One

can see immediately that the above equation (4.7) describes the plane Z = αξ/
√

1 − α2

intersecting the given sphere in a circle.

Let us then consider the case G4mA < 1/3
√

3, with nonvanishing m. In this case G(x)

vanishes at x = x1 , x2 where x1 < x2, these directions correspond to the axes of rotation.

To avoid a conical singularity at x = x2, we take φ to have the period ∆φbulk = 4π/|G′(x2)|.
Since we have adjusted the period at x = x2, one can no longer adjust the period at x = x1

and we encounter a conical singularity along this axis. For m 6= 0 one can not find the

solution of eq. (4.1) in a closed form. However, numerical integration shows that the

solution is periodic and bounded, and the period of the brane embedding is always larger

than that of the bulk, i.e. ∆φbrane > ∆φbulk as shown in figure 3. This discrepancy between

the two periods indicates the existence of a codimension-one object, an edge, on the brane.6

6An exact solution describing a codimension-one object on the brane was first described in [33, 34], while
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Figure 4: The absolute value of the energy per unit length |µ| of the edge as a function of G4mA.

We take λ = −0.2 for the case of critical brane δ = 0.

In figure 2 we provide a schematic plot of the embedding of the brane in the bulk. The

energy per unit length of this edge is given by [32]

µ = − 1

4πG4
cos−1(nµ

0n1µ) , (4.8)

where n0 and n1 are the unit normals on the two sides of the edge. Using eqs. (4.1)

and (A.2), and imposing the symmetry requirement ξ(−∆φbulk/2) = ξ(∆φbulk/2) and

ξ′(−∆φbulk/2) = −ξ′(∆φbulk/2) we obtain

µ = − 1

4π G4
cos−1

[

2α2/G(∆φbulk/2) − 1
]

, (4.9)

where G(∆φbulk/2) = G(ξ(∆φbulk/2)). From eq. (4.9) we see that the maximum value of

the tension is |G4µmax| = 1/4.

One can also obtain an expression for the energy per unit length τ of the edge from

the point of view of an observer on the brane. To this end we write the Isreal junction

conditions for the brane-induced metric

Kµν − ℓµνK = −8πG3ℓµντ , (4.10)

where K and ℓ are respectively the extrinsic curvature and the induced metric on the edge.

Using the metric in (4.3), and remembering that the angular coordinate φ ranges between

−∆φbulk/2 and ∆φbulk/2, we obtain

τ = − A

4πG3

√

−α2 +G(∆φbulk/2) , (4.11)

where in general one does not expect to have µ = τ .

In figure 4 we plot the absolute value of the energy per unit length for the range

G4mA
′ < 1/3

√
3. For small values of mA one can show by means of numerical techniques

its CFT interpretation was studied in [14]. Note that however in our case the defect is bounded by two

black holes, whereas the object considered in [33, 34, 14] has infinite extension.
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that the tension of the edge to a first order in mA is given on the critical brane by the

expression

µ = mA′ + O(G4m
2A′ 2) , (4.12)

where A′ = A
√

1 − α2 is the acceleration of the brane-induced black hole. In addition, we

can express τ in terms of µ and use the relation G3 = G4/2ℓ4 to obtain for small values

of mA

τ = mA′ + O(G4m
2A′ 2) . (4.13)

The first term in the above expression is classical in nature and appears due to the fact

that we accelerate massive objects. The second term is expected to be different from the

O
(

G4m
2A′ 2

)

correction to µ in (4.12), and is associated to the CFT correction. Although

gravity is dynamically trivial in 2+1 dimensions, the quantum effects generate a force

between particles. The existence of O (G4) corrections to the strut tension reflects the

presence of such quantum effects.

5. Discussion and conclusions

In this paper we have studied the most general embeddings of a vacuum 2-brane in a

AdS C-metric background. Our solutions generalize those found by Emparan, Horowitz

and Myers in 1999 [1, 2], and can be divided into two classes. The first class (studied

in section 3) contains time dependent metrics, whose CFT dual describes a rotationally

invariant, time dependent lump of radiation. By studying two specific cases we have seen

that, depending on the choices of parameters, the radiation can be either in the form of a

collapsing and bouncing shell or in the form of a lump that, starting from infinite density at

its center, eventually relaxes to a vacuum configuration. The second class of solutions that

we have found describes one (or two) accelerated black holes kept in a static configuration

either by a strut or by one (or two) strings.

The class of brane metrics studied in section 4 can be reduced to constant φ sections of

the general C-metric (2.1). It is straightforward to see in the same way that the solutions of

section 3 can be obtained by taking constant t sections of the C-metric (2.1). In this class

of solutions the radial coordinate y turns into a time coordinate in the regions inside the

horizon of the full C-metric (2.1). Already EHM had noticed that their 2+1 dimensional

black hole was characterized by the same metric as an equatorial section of a ordinary,

3+1 dimensional Schwarzschild black hole (with a deficit angle). Therefore, all the brane

induced metrics explicitly found by cutting a AdS C-metric with a vacuum brane appear to

be sections of a four dimensional vacuum metric. One might wonder whether this behavior

has any deep origin or it is only accidental.

Let us discuss the CFT interpretation of our solutions. The interpretation of the

solutions of section 4 is rather straightforward. In pure 2+1 dimensional gravity two

particles do not interact, since lower dimensional gravity is non dynamical. However, the

solution of EHM shows that, when dressed with the effects of a CFT, a particle in 2+1

dimensions generates an attractive field. Our solutions of section 4 describe a pair of such

particles accelerated by the presence of a strut (that in 2+1 dimensions is a codimension-1
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object). Since these dressed particles attract each other, we need to correct the force of the

strut to pull them away from each other: this is precisely what is described by a constant

φ section of a C-metric. It would be interesting to study the CFT counterpart of this

solution by computing the quantum corrections to a 2+1 dimensional geometry containing

two accelerated conical singularities.

The interpretation of the solutions of section 3 is less straightforward. Clearly, the

solution contains an evolving lump of CFT. In the limit of vanishing acceleration A → 0,

the lump of CFT becomes homogeneous and isotropic, and the solution converges to the

(dark) radiation dominated cosmology studied for instance in [26] - [29]. For nonvanishing

values of A, on the other hand, homogeneity is lost and only isotropy is maintained. The

case k = −1 is especially interesting, since in this case the dark radiation evolves on the

top of a conical geometry, implying that the dual description of this solution contains both

dark radiation and a (pointlike) particle. At variance with the static solution of EHM,

this conical singularity is naked, even if it is surrounded by an evolving bath of radiation.

Therefore it looks that in this case the ”quantum censorship of conical singularities” invoked

in [16] is not at work. However, contrary to the case studied by EHM, our solution is time

dependent. It is natural to ask whether the process of quantum censorship operates only

if we impose that the CFT be static. More explicitly, one might draw a parallel with

the different ways in which a 3+1 dimensional Schwarzschild black hole receives quantum

corrections: depending on the choice of boundary conditions, such quantum corrections can

be either regular at the horizon and at infinity (in the Unruh state), regular at infinity and

time-independent (in the Boulware state) or time-independent and regular at the horizon

(in the Hartle-Hawking state). It is tempting to see the dressed conical singularity of EHM

as the effect of the backreaction of the CFT in a Boulware-like state (time independent,

regular at infinity, singular at the center), whereas the solution discussed in section 3 should

be associated to a CFT in a Unruh-like state (regular everywhere but time dependent).

Again, it would be interesting to check this behavior on the CFT side of the duality.

Our solutions represent a generalization of the results of EHM, as they depend on one

more parameter. For the solutions discussed in section 4, this extra parameter is associated

to the acceleration of the brane black hole(s). In the case of the solution of section 3, the

extra parameter gives the typical length scale over which the lump of radiation evolves.

In general we see that for a given bulk metric we can find a variety of brane induced

metrics. We expect such a variety to be present also in the (definitely more interesting and

complicated) case of a 3-brane embedded in (4 + 1)-dimensional bulk.

Acknowledgments

We thank Roberto Emparan for pointing out an incorrect statement in the first version of

this paper and David Kastor for useful discussions. This work has been supported in part

by the U.S. National Science Foundation under the grant PHY-0555304.

– 13 –



J
H
E
P
0
7
(
2
0
0
8
)
0
9
8

A. No other solutions

In this appendix we show that the brane embeddings described in the previous sections 3

and 4 are the only possible ones.

Our starting point is the AdS C-metric

ds2 =
1

A2(x− y)2

[

−H(y) dt2 +
dy2

H(y)
+

dx2

G(x)
+G(x) dφ2

]

H(y) = λ− k y2 + 2G4 mAy
3 , G(x) = 1 + k x2 − 2G4mAx

3 (A.1)

with λ > −1 and k = −1 , 0 ,+1.

In the following we will be interested in the general embedding of a brane in the above

spacetime. We take our brane to be described by the surface x = ξ(t, y, φ). The unit

normal vector is given by

nµ =
A(x− y)

Dn
(ξ,t/H(y) ,−ξ,yH(y) , G(x) ,−ξ,φ/G(x)) , (A.2)

where Dn =
√

−ξ2,t/H(y) + ξ2,yH(y) +G(x) + ξ2,φ/G(x).

One can also construct a set of linearly independent vectors tangent to the surface

W µ
1 =

A(x− y) (1 , 0 , ξ,t , 0)
√

H(y) − ξ2,t/G(x)

W µ
2 =

A(x− y) (0 , 1 , ξ,y , 0)
√

1/H(y) + ξ2,y/G(x)

W µ
3 =

A(x− y) (0 , 0 , ξ,φ , 1)
√

G(x) + ξ2,φ/G(x)
. (A.3)

The non zero components of the induced metric hab on the brane are given by −h11 =

h22 = h33 = 1 and

h12 =
ξ,tξ,y

G(x)
√

H(y) − ξ2,t/G(x)
√

1/H(y) + ξ2,y/G(x)

h13 =
ξ,tξ,φ

G(x)
√

H(y) − ξ2,t/G(x)
√

G(x) + ξ2,φ/G(x)

h23 =
ξ,yξ,φ

G(x)
√

1/H(y) + ξ2,y/G(x)
√

G(x) + ξ2,φ/G(x)
. (A.4)

By direct calculations one can show that the non zero components of the extrinsic curvature
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Kab = hc
(ah

d
b)∇cnd are given by

K11 = A
2G2H − 2 (G+Hξ,y) ξ

2
,t +

(

G′ξ2,t − 2Gξ,tt +GHH ′ξ,y
)

(ξ − y)

2Dn(GH − ξ2,t)

K22 = −A
2G2 + 2H(G+Gξ,y +Hξ2,y)ξ,y +

(

GH ′ξ,y −G′Hξ2,y + 2GHξ,yy

)

(ξ − y)

2Dn(G+Hξ2,y)

K33 = −A
2G2(G+Hξ,y) + 2(G +Hξ,y)ξ

2
,φ +

(

−G2G′ − 3G′ξ2,φ + 2Gξ,φφ

)

(ξ − y)

2Dn(G2 + ξ2,φ)

K12 = A
−2(1 +Hξ,y)Hξ,tξ,y + (GH ′ξ,t +HG′ξ,tξ,y − 2Hξ,ty) (ξ − y)

2GH Dn

√

H − ξ2,t/G
√

1/H + ξ2,y/G

K13 = −A(G+Hξ,y)ξ,tξ,φ + (−G′ξ,tξ,φ + ξ,tφ) (ξ − y)

GDn

√

H − ξ2,t/G
√

G+ ξ2,φ/G

K23 = −A(G+Hξ,y)ξ,tξ,φ + (−G′ξ,yξ,φ +Gξ,yφ) (ξ − y)

GDn

√

1/H + ξ2,y/G
√

G+ ξ2,φ/G
, (A.5)

where we denote H ′ = dH(y)/dy and G′ = dG(x)/dx.

The Isreal junction conditions read

∆Kab = −8πG4

[

Sab −
1

2
S hab

]

(A.6)

where ∆Kab = K+
ab − K−

ab is the jump in the extrinsic curvature, and Sab is the energy

momentum tensor localized on the brane. We consider a purely tensional brane, i.e. Sab =

τ hab, where τ is the brane tension. In the following we impose the Z2 symmetry across the

brane, and we define the dimensionless parameter α = 2π G4 τ/A = (1 + δ)/ℓ4 A, where

δ = 0 corresponds to the case of a critical brane.

The junction conditions for our brane read ∆Kab = 4π G4 τ hab, and imply that the

ratio ∆Kab/hab is a constant. Hence, we can use the conditionsK33h23 = K23h33, K22h12 =

K12h22, K23h12 = K12h23 and K13h23 = K23h13, that yield respectively
(

G+ ξ2,φ/G

ξ2,y

)

,φ

= 0 ,

(

GH +H2 ξ2,y
ξ2,t

)

,y

= 0 ,

(

H ξ2,φ
Gξ2,t

)

,y

= 0 ,

(

ξ,y
ξ,t

)

,φ

= 0 , (A.7)

and using the last equation above we can write the first equation in (A.7) as
(

G+ ξ2,φ/G

ξ2,t

)

,φ

= 0 . (A.8)
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We readily integrate this set of equations to obtain

G+ ξ2,φ/G

ξ2,t
= F1(t, y) ,

GH +H2 ξ2,y
ξ2,t

= F2(t, φ) ,

H ξ2,φ
Gξ2,t

= F3(t, φ) ,

ξ,y
ξ,t

= F4(t, y) , (A.9)

where F1, F2, F3 and F4 are arbitrary functions. We use the second and the fourth equations

in (A.9) to solve for ξ,t and ξ,y to obtain

ξ,t =

√

G(ξ)H(y)
√

F2(t, φ) −H2(y)F 2
4 (t, y)

,

ξ,y =
F4(t, y)

√

G(ξ)H(y)
√

F2(t, φ) −H2(y)F 2
4 (t, y)

. (A.10)

We also can use the first and the third equations in (A.9) to solve for ξ,t and ξ,φ

ξ,φ =
G(ξ)

√

F3(t, y)
√

F1(t, y)H(y) − F3(t, φ)
,

ξ,t =

√

G(ξ)H(y)
√

F1(t, y)H(y) − F3(t, φ)
. (A.11)

Comparing ξ,t in (A.10) and (A.11) we obtain the consistency condition

H2(y)F 2
4 (t, y) + F1(t, y)H(y) = F2(t, φ) + F3(t, φ) = E(t) (A.12)

where E(t) is an arbitrary function of time only. Hence, we eliminate F1 and F3 from the

above equations to get

ξ,t =

√

G(ξ)H(y)
√

F2(t, φ) −H2(y)F 2
4 (t, y)

,

ξ,y =
F4(t, y)

√

G(ξ)H(y)
√

F2(t, φ) −H2(y)F 2
4 (t, y)

,

ξ,φ =
G(ξ)

√

E(t) − F2(t, φ)
√

F2(t, φ) −H2(y)F 2
4 (t, y)

. (A.13)

Now, we use the equation K33 h12 = K12 h33, which reads,

ξ,φ

(

1 +
ξ2,φ
G2

)(

H

ξ2,t

)

,y

+ ξ,y

(

H

ξ2,t

)(

1 +
ξ2,φ
G2

)

,φ

= 0 , (A.14)
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along with eq. (A.8) to obtain

Gξ,φ

(

H

ξ2,t

)

,y

= −Hξ,y
(

G

ξ2,t

)

,φ

. (A.15)

Substituting ξ,t, ξ,φ and ξ,y from eq. (A.13) into eq. (A.15) we find

G′H2F 3
4

√

HG (E − F2)

F2 −H2F 2
4

−G
√

E − F2

(

H2F 2
4

)

,y
= F4

√
HGF2,φ . (A.16)

In addition using the integrability condition ξ,tφ = ξ,φt we get

F4

√
HGF2,φ + F4G

′

√

HG(E − F2)(F2 −H2F 2
4 ) = −G

√

E − F2

(

H2F 2
4

)

,y
. (A.17)

By comparing eqs. (A.16) and (A.17) we finally obtain

F2(t, φ)F4(t, y)
√

E(t) − F2(t, φ) = 0 . (A.18)

This equation has three possible solutions: F2 = 0, F2 (t, φ) = E (t) and F4 = 0. Let us

examine them.

Using eq. (A.9), the condition F2 = 0 gives ξ2,y = −G(ξ)/H(y) which forces one of the

tangential coordinates on the brane to be light-like, i.e. W2 µW
µ
2 = 0. This situation is not

interesting for us and excludes the possibility F2 = 0.

The second possibility
√

E(t) − F2(t, φ) = 0, i.e. F3 = 0, gives ξ = ξ(t, y). In the

following we show that a solution of the form ξ = ξ(t, y) is also forbidden by the junction

conditions. We start by using the equations K11h33 = K33h11, K22h33 = K33h22 and

K12h33 = K33h12 from which we obtain

ξ,tt +H2(y)ξ,yy = 0 ,

H ′ξ,t = 2Hξ,yt . (A.19)

The second equation above can be integrated to yield

ξ(t, y) =
√

H(y)γ(t) + C(y) , (A.20)

where γ and C are arbitrary functions. Substituting this result into the first equation

of (A.19) we obtain

d2γ(t)

dt2
+
(

HH ′′/2 −H ′ 2/4
)

γ(t) +H3/2(y)C ′′(y) = 0 . (A.21)

Using H (y) = λ − ky2 + 2G4mAy
3 in the above equation, it is straightforward to see

that (A.21) does not have a solution for m 6= 0, so that also F3 = 0 is excluded.

Finally, the condition F4=0 gives ξ,y = 0 which implies that the possible solution could

only be of the form ξ = ξ(t, φ). However the K12 component gives the constraint ξ,t = 0.

Therefore, we are left with ξ = ξ(φ) as the only possible solution.

The proof is not complete yet, since we did not cover the case in which the embedding

does not depend on the coordinate x (i.e. the case where the brane embedding is described

by y = ψ (t, φ)). This case is however easily covered as we observe that the AdS C-metric

is invariant under the transformation t ↔ iφ, x ↔ y, G ↔ H. By using this duality we

immediately see that, if x = ξ (φ) solves our system (the solution is discussed in section 4),

then also y = ψ (t) will give a possible embedding (discussed in section 3).
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